Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 174: 116523, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38574627

RESUMO

Inflammatory bowel disease is linked to a higher occurrence of bone loss. Oxyberberine can effectively improve experimental inflammatory bowel disease. However, no study has shown the effect of oxyberberine on inflammatory bowel disease induced bone loss. The present study was performed to investigate the role of oxyberberine in inflammatory bowel disease induced osteoporosis in chronic inflammatory bowel disease mice model. The inflammatory bowel disease mice were orally given two doses of oxyberberine daily. Blood, colon, and bone specimens were collected for biomarker assessments and histological examinations. Bone biomechanical properties and key proteins and genes involved in the receptor activator of nuclear factor kappa-B ligand/nuclear factor kappa-B signaling pathway were evaluated. Additionally, the binding characteristics of oxyberberine and receptor activator of nuclear factor kappa-B ligand were evaluated by in silico simulation. Results indicated that oxyberberine treatment significantly attenuated the macroscopic damage, colonic shortening, and histological injury from the colon. Furthermore, oxyberberine decreased serum inflammatory cytokine levels. The intervention with oxyberberine significantly mitigated the deterioration of bone mass, biomechanical properties, and microstructural parameters. Moreover, the upregulated osteoclast formation factors in model mice were significantly abolished by oxyberberine. In silico simulation results also showed that oxyberberine was firmly bound with target protein. Hence, our findings indicated that oxyberberine had the potential to mitigate inflammatory bowel disease induced inflammation in bone, inhibit osteoclast formation through regulating the receptor activator of nuclear factor kappa-B ligand/nuclear factor kappa-B signaling pathway, and might be a valuable approach in preventing bone loss associated with inflammatory bowel disease.

2.
Bone Joint Res ; 13(2): 66-82, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38310924

RESUMO

Aims: This study aimed to explore the biological and clinical importance of dysregulated key genes in osteoarthritis (OA) patients at the cartilage level to find potential biomarkers and targets for diagnosing and treating OA. Methods: Six sets of gene expression profiles were obtained from the Gene Expression Omnibus database. Differential expression analysis, weighted gene coexpression network analysis (WGCNA), and multiple machine-learning algorithms were used to screen crucial genes in osteoarthritic cartilage, and genome enrichment and functional annotation analyses were used to decipher the related categories of gene function. Single-sample gene set enrichment analysis was performed to analyze immune cell infiltration. Correlation analysis was used to explore the relationship among the hub genes and immune cells, as well as markers related to articular cartilage degradation and bone mineralization. Results: A total of 46 genes were obtained from the intersection of significantly upregulated genes in osteoarthritic cartilage and the key module genes screened by WGCNA. Functional annotation analysis revealed that these genes were closely related to pathological responses associated with OA, such as inflammation and immunity. Four key dysregulated genes (cartilage acidic protein 1 (CRTAC1), iodothyronine deiodinase 2 (DIO2), angiopoietin-related protein 2 (ANGPTL2), and MAGE family member D1 (MAGED1)) were identified after using machine-learning algorithms. These genes had high diagnostic value in both the training cohort and external validation cohort (receiver operating characteristic > 0.8). The upregulated expression of these hub genes in osteoarthritic cartilage signified higher levels of immune infiltration as well as the expression of metalloproteinases and mineralization markers, suggesting harmful biological alterations and indicating that these hub genes play an important role in the pathogenesis of OA. A competing endogenous RNA network was constructed to reveal the underlying post-transcriptional regulatory mechanisms. Conclusion: The current study explores and validates a dysregulated key gene set in osteoarthritic cartilage that is capable of accurately diagnosing OA and characterizing the biological alterations in osteoarthritic cartilage; this may become a promising indicator in clinical decision-making. This study indicates that dysregulated key genes play an important role in the development and progression of OA, and may be potential therapeutic targets.

3.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38256932

RESUMO

OBJECTIVE: The therapeutic efficacy and molecular mechanisms of traditional Chinese medicines (TCMs), such as Liuwei Dihuang pills (LWDH pills), in treating osteoporosis (OP) remain an area of active research and interest in modern medicine. This study investigated the mechanistic underpinnings of LWDH pills in the treatment of OP based on network pharmacology, bioinformatics, and in vitro experiments. METHODS: The active ingredients and targets of LWDH pills were retrieved through the TCMSP database. OP-related targets were identified using the CTD, GeneCards, and DisGeNET databases. The STRING platform was employed to construct a protein-protein interaction (PPI) network, and core targets for LWDH pills in treating OP were identified. The GO functional and KEGG pathway enrichment analyses for potential targets were performed using the R package "clusterProfiler". A "drug-target" network diagram was created using Cytoscape 3.7.1 software. The viability of MC3T3-E1 cells was evaluated using the CCK-8 method after treatment with various concentrations (1.25%, 2.5%, 5%, and 10%) of LWDH pill-medicated serum for 24, 48, and 72 h. Following a 48 h treatment of MC3T3-E1 cells with LWDH pill-medicated serum, the protein levels of collagen Ⅰ, RUNX2, Wnt3, and ß-catenin were quantified using the Western blot analysis, and the activity of alkaline phosphatase (ALP) was measured. RESULTS: A total of 197 putative targets for LWDH pills for OP treatment were pinpointed, from which 20 core targets were singled out, including TP53, JUN, TNF, CTNNB1 (ß-catenin), and GSK3B. The putative targets were predominantly involved in signaling pathways such as the Wnt signaling pathway, the MAPK signaling pathway, and the PI3K-Akt signaling pathway. The intervention with LWDH pill-medicated serum for 24, 48, and 72 h did not result in any notable alterations in the cell viability of MC3T3-E1 cells relative to the control group (all p > 0.05). Significant upregulation in protein levels of collagen Ⅰ, RUNX2, Wnt3, and ß-catenin in MC3T3-E1 cells was observed in response to the treatment with 2.5%, 5%, and 10% of LWDH pill-medicated serum in comparison to that with the 10% rabbit serum group (all p < 0.05). Furthermore, the intervention with LWDH pill-medicated serum resulted in the formation of red calcified nodules in MC3T3-E1 cells, as indicated by ARS staining. CONCLUSIONS: LWDH pills may upregulate the Wnt/ß-catenin signaling pathway to elevate the expression of osteogenic differentiation proteins, including collagen Ⅰ and RUNX2, and to increase the ALP activity in MC3T3-E1 cells for the treatment of OP.

4.
Sci Rep ; 13(1): 22156, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092854

RESUMO

The association between the systemic immune-inflammation index (SII) and the risk of sarcopenia has not yet been revealed. The purpose of this study was to investigate the relationship between the SII and sarcopenia in individuals aged 18-59 years. All data for this study are from the National Health and Nutrition Examination Survey (NHANES) database, including 7258 participants (age range: 18-59 years). We divided SII values by quartiles (quartiles 1-4: 0.3-3.1, 3.2-4.4, 4.4-6.2, and 6.2-58.5). We constructed a multivariate logistic regression model to assess the association between the SII and the risk of sarcopenia, and an interaction test was run to test the stability of the model and identify high-risk individuals with sarcopenia. Compared to nonsarcopenia participants, sarcopenia patients had a significantly higher SII value (weighted average: 6.65 vs. 5.16) (P = 0.002). Multivariate logistic regression results showed a positive linear relationship between the SII and sarcopenia (OR [odds ratio] = 1.12, 95% CI [confidence interval] 1.03-1.21). Compared to the quartile 1 group, the quartile 4 group was associated with a higher risk of sarcopenia (OR = 3.94, 95% CI 1.42-10.94). Compared with the quartile 1 group, the OR value of the quartile 2 to quartile 4 groups showed an upwards trend (Ptrend < 0.001) as the level of SII increased. Subgroup analysis also indicate that the correlation between higher SII values and the risk of sarcopenia was stable. There was a significant positive linear relationship between SII and sarcopenia, indicating that higher SII values can increase the risk of sarcopenia in individuals aged 18-59 in the United States. The findings of this study will be beneficial in promoting the use of SII alone or in combination with other tools for the risk screening of sarcopenia in communities or large populations.


Assuntos
Sarcopenia , Humanos , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Inquéritos Nutricionais , Sarcopenia/epidemiologia , Pesquisa , Bases de Dados Factuais , Inflamação
5.
Joint Bone Spine ; 91(3): 105679, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38143017

RESUMO

OBJECTIVE: The purpose of this study was to explore the relationship between serum uric acid (SUA) concentrations and all-cause mortality in individuals with osteoarthritis (OA). METHODS: All participant data were retrieved from the National Health and Nutrition Examination Survey database. A total of 4671 participants (age range: 20 to 85 years old), including 2988 females and 1683 males, were included in this study. The determination of death outcome was based on the National Death Index (up to December 31, 2019). We explored the nonlinear relationship between SUA concentrations and all-cause mortality in OA patients by establishing a Cox proportional risk model and a two-segment Cox proportional risk model and ran an interaction test to identify the high-risk population for all-cause mortality. RESULTS: During 30,645 person-years of follow-up, the number of all-cause deaths for females and males was 736 and 516, respectively. After multivariate adjustment, we found a nonlinear relationship between SUA concentrations and all-cause mortality in both females and males with OA. In addition, we found a J-shaped relationship between SUA concentrations and all-cause mortality. The SUA concentration thresholds for all-cause mortality of females and males were stable at 5.6mg/dl and 6.2mg/dl, respectively. Compared with SUA concentrations below the inflection point, the all-cause mortality risk at higher SUA concentrations in females and males with OA increased by 20% (hazard ratio [HR]: 1.2, 95% confidence interval [CI]: 1.1 to 1.2) and 25% (HR: 1.2, 95% CI: 1.12 to 1.39), respectively. CONCLUSIONS: There is a nonlinear relationship between SUA concentrations and all-cause mortality in the American OA population (J-shaped association). The all-cause mortality thresholds for SUA concentrations in females and males are 5.6mg/dl and 6.2mg/dl, respectively.

6.
Front Med (Lausanne) ; 10: 1256238, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37915330

RESUMO

Background and objective: With the development of global population aging, comorbidity (≥2 diseases) is a common health problem among elderly people. Osteoarthritis (OA) and osteoporosis (OP) are common in elderly individuals. There is a lack of drug therapy for OA and OP comorbidities. The purpose of this study was to explore the efficacy and mechanism of Longbie capsule (LBJN), which contains various plant herbs, in treating OA and OP comorbidities (OA + OP) in rats using metabolomics techniques. Methods: We created an OA + OP rat model through bilateral oophorectomy combined with meniscus instability surgery. Thirty SD rats were randomly divided into five groups (six in each group), namely, the sham group, OA group, OA + OP group, LBJN low-dose group (0.625 g/kg, OA + OP+LB-L group) and LBJN high-dose group (1.25 g/kg, OA + OP+LB-H group). After 8 weeks of intervention, we used micro-CT to detect bone microstructure status, ELISA to measure bone metabolism indicators, and UPLC-MS technology for metabolomics analysis. Finally, the screened differentially expressed metabolites were subjected to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and functional enrichment analysis. Results: The micro-CT results showed that LBJN significantly improved the bone mineral density (BMD) and bone quality of subchondral bone in OA + OP rats, and LBJN regulated the expression of bone alkaline phosphatase (BALP), osteoprotegerin (OPG), and tartrate-resistant acid phosphatase (TRACP) in serum to maintain bone metabolism balance. Metabolomics analysis showed that the metabolic trajectory of OA + OP rats after intervention in the OA + OP+LB-H group showed significant changes, and 107 potential biomarkers could be identified. Among them, 50 metabolites were upregulated (such as zeranol) and 57 were downregulated (such as vanillactic acid). The KEGG functional enrichment results indicated that the differentially expressed metabolites are mainly involved in amino acid metabolism, lipid metabolism, and carbohydrate metabolism. The KEGG pathway enrichment results indicated that LBJN may exert therapeutic effects on OA + OP rats by regulating the cAMP signaling pathway, and the FoxO signaling pathway. Conclusion: LBJN can maintain bone metabolism balance by regulating serum lipid metabolism, amino acid metabolism, carbohydrate metabolism, and estrogen, thereby reducing bone loss in subchondral bone, which may be a potential mechanism through which LBJN treats OA + OP.

7.
Artigo em Inglês | MEDLINE | ID: mdl-37881072

RESUMO

BACKGROUND: Osteoporosis (OP) is a systemic bone metabolism disorder in which the immune system and bone metabolism interact. OBJECTIVE: The purpose of this study was to explore the research status, hot spots and trends regarding the influence of the immune system on OP and to provide a basis for research directions and applications in this field. METHODS: We searched and collected literature about the immune system and OP published from 2012 to 2022 in the Web of Science Core Collection database. All the included studies were subjected to bibliometrics analysis using Hiplot Pro, VOSviewer and CiteSpace software to produce statistics and visual analyses of the literature output, countries, institutions, authors, keywords and journals. RESULTS: A total of 1201 papers were included, and the number of citations of these articles reached 31,776. The number of publications and citations on the immune system and OP has increased year by year. The top three countries with the greatest number of papers published were China, the United States of America (USA) and Italy. The two institutions with the largest number of papers published were Sichuan University and Soochow University, both located in China. De Martinis Massimo (Italy) and Ginaldi Lia (Italy) are prolific authors in this field. The representative academic journals are Osteoporosis International, Frontiers in Immunology, Journal of Bone and Mineral Research, PloS One and Bone. The results of the keyword cooccurrence analysis showed that the research topics in this field mainly focused on T cells, cytokines, signaling pathways, vitamin D, postmenopausal OP and immune diseases. The keyword burst results showed that zoledronic acid, chain fatty acids and gut microbiota are the frontiers and trends of future research on this topic. CONCLUSION: The influence of the immune system on OP has been widely studied, and the current research in this field focuses on the effect or mechanism of immune-related cytokines, signaling pathways and vitamin D on OP. Future research trends in this field should focus on the immune regulation mechanism and clinical transformation of zoledronic acid, chain fatty acids and the gut microbiota in OP.

8.
Int J Biol Sci ; 19(10): 3029-3041, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37416770

RESUMO

Nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor that regulates redox homeostasis, plays a pivotal role in several cellular processes such as cell proliferation and survival, and has been found to be aberrantly activated in many cancers. As one of the key oncogenes, Nrf2 represents an important therapeutic target for cancer treatment. Research has unraveled the main mechanisms underlying the Nrf2 pathway regulation and the role of Nrf2 in promoting tumorigenesis. Many efforts have been made to develop potent Nrf2 inhibitors, and several clinical trials are being conducted on some of these inhibitors. Natural products are well-recognized as a valuable source for development of novel therapeutics for cancer. So far, a number of natural compounds have been identified as Nrf2 inhibitors, such as apigenin, luteolin, and quassinoids compounds including brusatol and brucein D. These Nrf2 inhibitors have been found to mediate an oxidant response and display therapeutic effects in different types of human cancers. In this article, we reviewed the structure and function of the Nrf2/Keap1 system and the development of natural Nrf2 inhibitors with an emphasis on their biological function on cancer. The current status regarding the Nrf2 as a potential therapeutic target for cancer treatment was also summarized. It is hoped that this review will stimulate research on naturally occurring Nrf2 inhibitors as therapeutic candidates for cancer treatment.


Assuntos
Fator 2 Relacionado a NF-E2 , Neoplasias , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias/tratamento farmacológico , Oxirredução , Carcinogênese
9.
J Orthop Surg Res ; 18(1): 312, 2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37087476

RESUMO

BACKGROUND: Although fisetin may exist widely in many natural herbs, its anti-OP mechanism is still unclear. The aim of this study is to explore the molecular anti-osteoporosis (OP) mechanism of fisetin based on network pharmacology and cell experiments. METHODS: The target of fisetin was extracted by the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). The targets of OP were obtained by DisGeNET, GeneCards and the Comparative Toxicogenomics Database, and the targets of fisetin in OP were screened by cross-analysis. The protein-protein interaction (PPI) network was constructed by STRING, and the core targets were obtained. We performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses on common targets via the Database for Annotation, Visualization and Integrated Discovery. Finally, an in vitro cell experiment was used to verify the anti-OP effect and mechanism of fisetin. RESULTS: There are 44 targets of fisetin related to the treatment of OP. The PPI results suggest that CTNNB1, CCND1, TP53, JUN, and AKT1 are the core targets. A total of 259 biological process, 57 molecular function and 26 cell component terms were obtained from GO enrichment analysis. The results of KEGG pathway enrichment analysis suggested that fisetin treatment of OP may be related to the Wnt signaling pathway, estrogen signaling pathway, PI3K-Akt signaling pathway and other signaling pathways. In vitro cell experiments showed that fisetin significantly increased the expression levels of ALP, collagen I, osteopontin and RUNX2 in bone marrow mesenchymal stem cells (BMSCs) (p < 0.05). Fisetin also increased the gene expression levels of Wnt3 and ß-catenin (CTNNB1) in BMSCs, which indicates that fisetin can regulate the Wnt/ß-catenin signaling pathway and promote the osteogenic differentiation of BMSCs. CONCLUSIONS: Fisetin acts on multiple targets and pathways in the treatment of OP; mechanistically, it regulates the Wnt/ß-catenin signaling pathway, which promotes the osteogenic differentiation of BMSCs and maintains bone homeostasis. The results of this study provide a theoretical basis for further study on the complex anti-OP mechanism of fisetin.


Assuntos
Medicamentos de Ervas Chinesas , Flavonóis , Farmacologia em Rede , Osteoporose , Via de Sinalização Wnt , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Osteogênese/efeitos dos fármacos , Fosfatidilinositol 3-Quinases , Via de Sinalização Wnt/efeitos dos fármacos , Flavonóis/farmacologia , Flavonóis/uso terapêutico , Osteoporose/tratamento farmacológico , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo
10.
J Ethnopharmacol ; 301: 115775, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36198377

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Palmatine (Pal) is a major bioactive alkaloid originated from ancient Chinese herbal medicine Cortex Phellodendri Amurensis (CPA), which has long been applied to treat hyperuricemia (HUA)-related diseases. Pal possesses potent anti-inflammatory and anti-oxidant effects against metabolic diseases. However, its potential beneficial effect against PO (potassium oxonate)/HX (hypoxanthine)-induced HUA remains elusive. AIM OF THE STUDY: This study aimed to investigate the potential pharmacological effect and mechanism of Pal on PO/HX-induced HUA in mice. MATERIAL AND METHODS: A mouse model of HUA was established by co-administration of PO/HX once daily for 7 consecutive days. The HUA mice were orally given three doses (25, 50 and 100 mg/kg) of Pal daily for a week. Febuxostat (Feb, 5 mg/kg) was given as a positive control. At the scheduled termination of the experiment, the whole blood, liver and kidney were collected for subsequent analyses. The concentrations of uric acid (UA), creatinine (CRE) and blood urea nitrogen (BUN), and activities of adenosine deaminase (ADA) and xanthine oxidase (XOD) were evaluated. Histopathological alterations of the kidney were detected by H&E staining. The inflammatory and oxidative stress status was detected by assay kits. Additionally, key proteins involved in the urate transporter, Keap1-Nrf2 and TXNIP/NLRP3 signaling pathways were evaluated by immunohistochemistry and Western blotting. Finally, molecular docking was employed to probe the binding characteristics of Pal and target proteins Keap1, NLRP3, URAT1 and HO-1. RESULTS: Administration of Pal substantially decreased the elevated kidney weight, lowered UA, CRE and BUN levels, and attenuated abnormal histopathological alterations. Meanwhile, treatment with Pal also dramatically lowered hepatic XOD and ADA activities. Besides, Pal treatment effectively mitigated the renal inflammatory and oxidative stress markers. Further mechanistic investigation indicated Pal distinctly downregulated the protein levels of GLUT9 and URAT1, while up-regulated the expression levels of OAT1 and ABCG2. Pal also restored Nrf2 activation, promoted subsequent expression of anti-oxidative enzymes, and downregulated the expressions of TXNIP, NLRP3, apoptosis-associated speck-like (ASC), caspase-1, IL-1ß and IL-18. Molecular docking analysis also indicated Pal firmly bound with Keap1, NLRP3, URAT1 and HO-1. CONCLUSIONS: These findings indicated that Pal exhibited favorable anti-HUA effect via modulating the expressions of transporter-related proteins and suppressing XOD activity. Furthermore, Pal also alleviated HUA-induced kidney injury, which was at least partially related to restoring Keap1-Nrf2 pathway and inhibiting TXNIP/NLRP3 inflammasome. Our investigation was envisaged to provide experimental support for the traditional application of CPA and CPA-containing classical herbal formulas in the management of HUA-related diseases and might provide novel dimension to the clinical application of Pal.


Assuntos
Hiperuricemia , Ácido Úrico , Camundongos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Simulação de Acoplamento Molecular , Hiperuricemia/induzido quimicamente , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Xantina Oxidase/metabolismo , Rim , Creatinina
11.
Front Med (Lausanne) ; 10: 1288591, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38274450

RESUMO

Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease. The clinical manifestations of various joint pain and bone destruction are common. RA has a high disability rate and is closely related to local and systemic osteoporosis (OP). RA can occur at any age, however, its incidence increases with age. Most patients are 40 to 50 years old with an incidence among women approximately 3 to 5 times more than among men. Osteoporosis is a kind of metabolic bone disease characterized by bone mass and bone microstructure damage and is one of the common complications of RA. Currently, in the clinic, more patients develop RA with OP symptoms. Therefore, both OP and RA-related factors should be considered in the OP treatment of RA. Currently, there is more and more research on RA combined with OP drugs, including basic drugs, bone resorption inhibitors, bone formation promoters, and anti-rheumatic drugs to improve the condition. The high cost or limited efficacy of certain Western drugs, coupled with their potential for adverse reactions during treatment highlight the pressing need for novel pharmaceuticals in clinical practice. In recent years, traditional Chinese medicine (TCM) can improve the bone formation and bone resorption indexes of patients with RA, regulate the balance of osteoclasts and osteoblasts, and regulate the immune inflammatory response, so as to treat RA combined with OP. This article discusses the advancements in single Chinese medicine and Chinese medicine combination treatments for RA complicated with OP, focusing on the mechanism of action and syndrome differentiation and classification, to offer new ideas for future clinical prevention and treatment.

12.
Inflamm Regen ; 42(1): 56, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36456978

RESUMO

BACKGROUND: Brachial plexus avulsion (BPA) physically involves the detachment of spinal nerve roots themselves and the associated spinal cord segment, leading to permanent paralysis of motor function of the upper limb. Root avulsion induces severe pathological changes, including inflammatory reaction, oxidative damage, and finally massive motoneuron apoptosis. Quercetin (QCN), a polyphenolic flavonoid found in abundance in fruit and vegetables, has been reported to possess anti-oxidative, anti-inflammatory, and neuroprotective effects in many experimental models of both central nervous system (CNS) and peripheral nervous system (PNS) disorders. The purpose of this study was to investigate whether QCN could improve motor function recovery after C5-7 ventral root avulsion and C6 reimplantation in a rat model of BPA. METHODS: The right fifth cervical (C5) to C7 ventral roots were avulsed followed by re-implantation of only C6 to establish the spinal root avulsion plus re-implantation model in rats. After surgery, rats were treated with QCN (25, 50, and 100 mg/kg) by gavage for 2 or 8 consecutive weeks. The effects of QCN were assessed using behavior test (Terzis grooming test, TGT) and histological evaluation. The molecular mechanisms were determined by immunohistochemistry analysis and western blotting. RESULTS: Our results demonstrated that QCN significantly expedited motor function recovery in the forelimb as shown by the increased Terzis grooming test score, and accelerated motor axon regeneration as evidenced by the ascending number of Fluoro-Ruby-labeled and P75-positive regenerative motoneurons. The raised ChAT-immunopositive and cresyl violet-stained neurons indicated the enhanced survival of motoneurons by QCN administration. Furthermore, QCN treatment markedly alleviated muscle atrophy, restored functional motor endplates in biceps and inhibited the microglial and astroglia activation via modulating Nrf2/HO-1 and neurotrophin/Akt/MAPK signaling pathway. CONCLUSIONS: Taken together, these findings have for the first time unequivocally indicated that QCN has promising potential for further development into a novel therapeutic in conjunction with reimplantation surgery for the treatment of BPA. .

13.
Food Chem Toxicol ; 166: 113215, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35691465

RESUMO

Oxyberberine (OBB), a main gut-mediated metabolite of Phellodendron chinense Cortex (PC), exhibits prominent protective property against acute liver injury (ALI). Heme oxygenase-1 (HO-1) is a vital molecule in attenuating acute and chronic liver injury for its prominent anti-oxidative injury and anti-inflammation properties. The present study was performed to investigate the hepatoprotective role of OBB through HO-1 signaling pathway in lipopolysaccharide/D-galactosamine (LPS/D-GalN) induced ALI. Our results indicated that PC treatment improved survival rate and its metabolite OBB evidently improved histopathological deteriorations and liver function. Additionally, OBB dramatically ameliorated hepatic oxidative stress and inflammation. Besides, OBB exerted remarkable HO-1 agonistic activity, even be comparable to hemin (a HO-1 inducer), as evidenced by increased HO-1 level, carbon monoxide and bilirubin activities, which are the markers of erythrocyte metabolism. Moreover, OBB modulated the parameters of inflammation and oxidative stress through HO-1 dependent pathway. Beyond this, OBB also notably suppressed the translocation of p65, enhanced antioxidation defense genes expressions, promoted the degradation of Kelch-like ECH-associated protein 1 (Keap1) and the nuclear translocation of nuclear factor-erythroid-2-related factor 2 (Nrf2). In conclusion, OBB could be the principle active metabolite substance of PC and exert excellent hepatoprotective effects via inducing HO-1 through coactivation of erythrocyte metabolism and Nrf2/HO-1 pathway.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Galactosamina , Animais , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Eritrócitos/metabolismo , Galactosamina/toxicidade , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Lipopolissacarídeos/farmacologia , Fígado , Camundongos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Transdução de Sinais
14.
Phytomedicine ; 101: 154135, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35509133

RESUMO

BACKGROUND: Oxyberberine (OBB), an important in vivo metabolite of berberine, exerts superior hypoglycemia effect. However, the underlying mechanism remains obscure. Heme oxygenase-1 (HO-1) holds a crucial status in the pathogenesis of diabetes. Previous research has indicated that OBB can specifically bind to hemoglobin and significantly up-regulated the HO-1 expression in diabetic rat. Based on cellular protection features of HO-1, this work aimed to probe the anti-diabetic effect of OBB and the association with the potential induction of HO-1 expression. METHODS: A type 2 diabetic mellitus rat model was established. Glucolipid metabolism and insulin sensitivity were analyzed. Immunohistochemistry, Western blotting and in silico simulations were also performed. RESULTS: Administration of OBB or HO-1 inducer hemin significantly reduced fasting blood glucose level, blood fat, and inflammatory cytokine levels, while increased antioxidant capacity of pancreas. Meanwhile, OBB treatment remarkably stimulated liver glycogenesis and inhibited gluconeogenesis. Besides, OBB improved the glucose utilizing of muscle. Noteworthily, OBB inhibited the islet cell apoptosis and improved pancreatic function. In addition, OBB effectively improved the consumption of glucose in insulin-resistant HepG2 cells. Moreover, OBB also reduced oxidative stress, promoted glucose-elicited insulin secretion and enhanced expression of ß-cell function proteins in INS-1 cells. Nevertheless, these effects were significantly reversed by treatment with Zincprotoporphrin (ZnPP). Additionally, in silico simulations indicated that OBB exhibited superior affinity with HO-1. CONCLUSION: OBB effectively ameliorated hyperglycemia, dyslipidemia, and insulin resistance, improved oral glucose tolerance, and maintained glucose metabolism homeostasis, at least in part, by promoting HO-1-mediated activation of phosphoinositide 3-kinase / protein kinase B (PI3K/Akt) and AMP-activated protein kinase (AMPK) pathways. These data eloquently suggest that OBB, as a novel HO-1 agonist, has good potential to be a promising candidate drug for the management of diabetes, and support a therapeutic role of HO-1 induction in diabetes that potentially paves the way to translational research.


Assuntos
Diabetes Mellitus , Hipoglicemia , Resistência à Insulina , Animais , Diabetes Mellitus/tratamento farmacológico , Glucose/metabolismo , Heme Oxigenase-1/metabolismo , Hipoglicemia/tratamento farmacológico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Resistência à Insulina/fisiologia , Fosfatidilinositol 3-Quinases , Ratos
15.
Front Pharmacol ; 13: 853119, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370639

RESUMO

Brucea javanica (Ya-dan-zi in Chinese) is a well-known Chinese herbal medicine, which is traditionally used in Chinese medicine for the treatment of intestinal inflammation, diarrhea, malaria, and cancer. The formulation of the oil (Brucea javanica oil) has been widely used to treat various types of cancer. It has also been found that B. javanica is rich in chemical constituents, including quassinoids, triterpenes, alkaloids and flavonoids. Pharmacological studies have revealed that chemical compounds derived from B. javanica exhibit multiple bioactivities, such as anti-cancer, anti-bacterial, anti-diabetic, and others. This review provides a comprehensive summary on the pharmacological properties of the main chemical constituents presented in B. javanica and their underlying molecular mechanisms. Moreover, the review will also provide scientific references for further research and development of B. javanica and its chemical constituents into novel pharmaceutical products for disease management.

16.
Front Endocrinol (Lausanne) ; 13: 866641, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35355555

RESUMO

Purpose: To explore the molecular mechanism of luteolin in the treatment of osteoporosis (OP) by network pharmacological prediction and experimentation. Methods: The target proteins of luteolin were obtained with the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). OP-related proteins were extracted from the Comparative Toxicogenomics Database (CTD) and GeneCards and DisGeNET databases. We imported the common protein targets of luteolin and OP into the STRING database to obtain the relationships between the targets. The common target proteins of luteolin and OP were assessed by KEGG and GO enrichment analyses with the DAVID database. Animal experiments were conducted to verify the effect of luteolin on bone mineral density in ovariectomised (OVX) rats. Finally, the effects of luteolin on key signalling pathways were verified by cell experiments in vitro. Results: Forty-four targets of luteolin involved in the treatment of OP, including key target proteins such as TP53, AKT1, HSP90AA1, JUN, RELA, CASP3, and MAPK1, were screened. KEGG enrichment analysis found that luteolin inhibits OP by regulating the PI3K-Akt, TNF, oestrogen and p53 signalling pathways. The results of animal experiments showed that bone mass in the low-dose luteolin group (Luteolin-L group, 10 mg/kg), high-dose luteolin group (Luteolin-H group, 50 mg/kg) and positive drug group was significantly higher than that in the OVX group (P<0.05). Western blot (WB) analysis showed that the protein expression levels of Collagen I, Osteopontin and RUNX2 in bone marrow mesenchymal stem cells (BMSCs) cultured with 0.5, 1 and 5 µM luteolin for 48 h were significantly higher than those in the dimethyl sulfoxide (DMSO) group (P<0.05). In vitro cell experiments showed that the p-PI3K/PI3K and p-Akt/Akt expression ratios in BMSCs cultured with 0.5, 1 and 5 µM luteolin for 48 h were also significantly higher than those in the DMSO group (P<0.05). Conclusions: Luteolin has multitarget and multichannel effects in the treatment of OP. Luteolin could reduce bone loss in OVX rats, which may be due to its ability to promote the osteogenic differentiation of BMSCs by regulating the activity of the PI3K-Akt signalling pathway.


Assuntos
Luteolina , Osteoporose , Animais , Luteolina/farmacologia , Luteolina/uso terapêutico , Farmacologia em Rede , Osteogênese , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ratos
17.
Phytomedicine ; 85: 153550, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33831691

RESUMO

BACKGROUND: Berberine (BBR) has been widely used to treat non-alcoholic fatty liver disease (NAFLD). The metabolites of BBR were believed to contribute significantly to its pharmacological effects. Oxyberberine (OBB), a gut microbiota-mediated oxidative metabolite of BBR, has been firstly identified in our recent work. PURPOSE: Here, we aimed to comparatively investigate the anti-NAFLD properties of OBB and BBR. METHODS: The anti-NAFLD effect was evaluated in high-fat diet-induced obese NAFLD rats with biochemical/ELISA tests and histological staining. The related gene and protein expressions were detected by qRT-PCR and Western blotting respectively. Molecular docking and dynamic simulation were also performed to provide further insight. RESULTS: Results indicated OBB remarkably and dose-dependently attenuated the clinical manifestations of NAFLD, which (100 mg/kg) achieved similar therapeutic effect to metformin (300 mg/kg) and was superior to BBR of the same dose. OBB significantly inhibited aberrant phosphorylation of IRS-1 and up-regulated the downstream protein expression and phosphorylation (PI3K, p-Akt/Akt and p-GSK-3ß/GSK-3ß) to improve hepatic insulin signal transduction. Meanwhile, OBB treatment remarkably alleviated inflammation via down-regulating the mRNA expression of MCP-1, Cd68, Nos2, Cd11c, while enhancing Arg1 mRNA expression in white adipose tissue. Moreover, OBB exhibited closer affinity with AMPK in silicon and superior hyperphosphorylation of AMPK in vivo, leading to increased ACC mRNA expression in liver and UCP-1 protein expression in adipose tissue. CONCLUSION: Taken together, compared with BBR, OBB was more capable of maintaining lipid homeostasis between liver and WAT via attenuating hepatic insulin pathway and adipocyte inflammation, which was associated with its property of superior AMPK activator.


Assuntos
Berberina/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Quinases Proteína-Quinases Ativadas por AMP , Tecido Adiposo Branco/efeitos dos fármacos , Animais , Dieta Hiperlipídica , Homeostase , Inflamação/tratamento farmacológico , Insulina/metabolismo , Fígado/efeitos dos fármacos , Masculino , Simulação de Acoplamento Molecular , Obesidade , Oxirredução , Fosforilação , Proteínas Quinases/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos
18.
Biomed Pharmacother ; 137: 111312, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33524788

RESUMO

Berberine (BBR) is a promising anti-diabetic isoquinoline alkaloid from Rhizoma coptidis, while its bioavailability was extremely low. Here, the existing form and pharmacokinetics of BBR were comparatively characterized in conventional and antibiotic-induced pseudo germ-free (PGF) rats. Furthermore, we comparatively investigated the antidiabetic effect and potential mechanism of BBR and its intestinal oxidative metabolite oxyberberine (OBB) in STZ-induced diabetic rats. Results showed that BBR and OBB existed mainly as protein-bound form in blood, while protein-bound OBB was significantly depleted in PGF rats. Treatment with OBB and BBR effectively decreased clinical symptoms of diabetic rats, reduced blood glucose level, ameliorated the pancreatic damage, and mitigated oxidative stress and inflammatory markers. However, the anti-diabetes effect of BBR was obviously compromised by antibiotics. In addition, OBB exerted superior anti-diabetes effect to BBR of the same dose, significantly up-regulated the mRNA expression of Nrf2 signaling pathway and substantially promoted the pancreatic levels of PI3K/Akt signaling pathway. In conclusion, BBR and its absorbed oxidative metabolite OBB were mainly presented and transported in the protein-bound form in vivo. The gut microbiota may play an important role in the anti-diabetes effect of BBR through transforming itself into the superior hypoglycemic metabolite OBB. OBB possessed favorable hypoglycemic and pancreatic ß-cells protective effects, which may stand a huge potential to be further developed into a promising anti-diabetes candidate.


Assuntos
Berberina/análogos & derivados , Berberina/farmacologia , Hipoglicemiantes/farmacologia , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Proteína Oncogênica v-akt/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Glicemia/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Simulação de Acoplamento Molecular , Estresse Oxidativo/efeitos dos fármacos , Pâncreas/patologia , Ratos , Ratos Sprague-Dawley
19.
Biomed Pharmacother ; 134: 111122, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33341052

RESUMO

Brucea javanica oil (BJO), one of the main products of Brucea javanica, has been widely used in treating different kinds of malignant tumors. Quassinoids are the major category of anticancer phytochemicals of B. javanica. However, current researches on the anti-cancer effect of BJO mainly focused on oleic acid and linoleic acid, the common major components of dietary edible oils, essential and characteristic components of B. javanica like quassinoids potentially involved remained unexplored. In the current investigation, we developed an efficient HPLC method to detect brusatol, a characteristic quassinoid, and comparatively scrutinized the anti-hepatocellular carcinoma (anti-HCC) effect of BJO, brusatol-free BJO (BF-BJO), and brusatol-enriched BJO (BE-BJO) against hepatoma 22 (H22) in mice. High-performance liquid chromatography (HPLC) was utilized to identify the components in BJO. BE-BJO was extracted with 95 % ethanol. The anti-tumor effect of BJO, BF-BJO and BE-BJO was comparatively investigated, and the potential underlying mechanism was explored in H22 ascites tumor-bearing mice. The results indicated that BJO and BE-BJO significantly prolonged the survival time of H22 ascites tumor-bearing mice, while BF-BJO exhibited no obvious effect. BJO and BE-BJO exhibited pronounced anti-HCC activity by suppressing the growth of implanted hepatoma H22 in mice, including ascending weight, abdominal circumference, ascites volume and cancer cell viability, with a relatively wide margin of safety. BJO and BE-BJO significantly induced H22 cell apoptosis by upregulating the miRNA-29b gene level and p53 expression. Furthermore, BJO and BE-BJO treatment substantially downregulated Bcl-2 and mitochondrial Cytochrome C protein expression, and upregulated expression levels of Bax, Bad, cytosol Cytochrome C, caspase-3 (cleaved), caspase­9 (cleaved), PARP and PARP (cleaved) to induce H22 cells apoptosis. Brusatol was detected in BJO and found to be one of its major active anti-HCC components, rather than fatty acids including oleic acid and linoleic acid. The anti-HCC effect of BJO and BE-BJO was intimately associated with the activation of miRNA-29b, p53-associated apoptosis and mitochondrial-related pathways. Our study gained novel insight into the material basis of BJO in the treatment of HCC, and laid a foundation for a novel specific standard for the quality evaluation of BJO and its commercial products in terms of its anti-cancer application.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Brucea , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Óleos de Plantas/farmacologia , Quassinas/farmacologia , Animais , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Brucea/química , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Óleos de Plantas/isolamento & purificação , Quassinas/isolamento & purificação , Transdução de Sinais , Carga Tumoral/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
20.
Biomed Pharmacother ; 114: 108766, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30901719

RESUMO

Brucea javanica is an important Chinese folk medicine traditionally used for the treatment of dysentery (also known as inflammatory bowel diseases). Brucea javanica oil emulsion (BJOE), the most common preparation of Brucea javanica, has a variety of pharmacological activities. In this follow-up investigation, we endeavored to illuminate the potential benefit of BJOE on 2, 4, 6-trinitrobenzenesulfonic acid (TNBS)-induced Crohn's disease (CD) in rats and decipher the mechanism of action. The result illustrated that BJOE treatment significantly reduced the body weight loss, disease activity index and macroscopic scores, ameliorated shortening of colon length, arrested colonic histopathological deteriorations, lowered the histological scores in parallel to the model group. Furthermore, BJOE also decreased the levels of MPO and pro-inflammatory cytokines (TNF-α, IL-1ß, IL-6, IL-17, IL-23 and IFN-γ), and increased the levels of anti-inflammatory cytokines (IL-4, IL-10 and TGF-ß) as compared with the model group. In addition, the elevated mRNA expression of MMP-1, MMP-3 and RAGE induced by TNBS was remarkably inhibited by BJOE, SASP or AZA treatments, while the mRNA expression of PPAR-γ was significantly enhanced. Furthermore, the activation of TLR4/NF-κB signaling pathway was significantly inhibited by AZA and BJOE treatment when compared with that of TNBS-treated rats. Our study suggested that BJOE exerted superior therapeutic effect to SASP and AZA in treating TNBS-induced colitis in rats. The protective effect of BJOE may involve the inhibition of the TLR4/NF-κB-mediated inflammatory responses. These results indicated that BJOE held promising potential to be further developed into a novel candidate for the treatment of CD.


Assuntos
Brucea/química , Doença de Crohn/tratamento farmacológico , Emulsões/farmacologia , NF-kappa B/metabolismo , Óleos de Plantas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Animais , Colo/efeitos dos fármacos , Colo/metabolismo , Doença de Crohn/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...